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Executive Summary 

In recent years several new surveillance technologies have been developed to improve standoff 
range at which enemy personnel, activity, and equipment can be detected, identified, and 
engaged.  Different wavelengths are being explored for these new Army electro-optical sensors.  
Most of these sensors operate at shorter wavelengths than traditional far-infrared imaging 
devices developed during the 1970’s and 1980’s.  As a result, the influence of optical turbulence 
on these systems is significantly greater, requiring that turbulence effects be directly included in 
wargaming simulations of sensor performance.  The key parameter governing optical turbulence 
effects is the refractive index structure parameter Cn

2.   

This parameter is a highly variable function of location in the earth’s atmosphere.  It also varies 
extremely over the course of a day even at a single location.  Near the earth’s surface, it can vary 
by four orders of magnitude.  It also can vary by several orders of magnitude with height above a 
single point.  To determine the effects of Cn

2 on a given system, one must integrate the Cn
2 value 

over a path between sensor and target.  Usually this path integral is weighted according to some 
dimensionless function of path position.  The specific effect will also depend on wavelength, 
receiver aperture diameter, path length, and possibly the inner scale of turbulence.  For now, we 
are less concerned with inner scale, which perturbs the general results, than we are with the 
overall strength of turbulence, Cn

2.  The basic problem is to posit a model of this parameter as a 
function of time and height above the surface.  In this document we mainly focus on height 
functionality.   

Several models of Cn
2 variation with height have been previously developed.  Unfortunately, 

most of these models only consider limited altitude ranges.  For example, the Air Force 
developed the Air Force’s Maui Optical Station (AMOS) and Critical Laser Enhancing 
Atmospheric Research (CLEAR) models applicable to conditions above their Mauna Loa 
summit observatory and the southern New Mexico desert, respectively.  A more general model 
with wide application is the Hufnagel-Valley model.  Unfortunately, this function of height 
model is mainly useful for nighttime earth-to-space applications.  It performs particularly poorly 
during daytime conditions where turbulence is the strongest near the surface, which is the time of 
day that is most stressing to performance of Army systems.   

To provide a single model suitable for simulation of vertical structure conditions it was decided 
that these disparate models covering different portions of the atmosphere (surface layer, 
boundary layer, upper troposphere) could be blended together into a single model.  The 
distinguishing feature of the model developed is the coupling of the different models of height 
dependence in different altitude regions of the atmosphere into a single height model.   

 v



 

We then discuss the governing parameters of this profile model.  The primary parameters are the 
height of the elevated inversion layer and the turbulence strength at a standard height.  We 
analyze historical boundary layer height data to develop a function of height of the inversion 
layer versus time of day for different months of the year.  This function is then used to derive one 
of the main governing atmospheric structure parameters, which can be computed directly based 
on time of day, month, and sky cover. Follow-on work will extend this picture to cover the 
temporal structure of the turbulence depending on time of day, climate, local terrain, and current 
weather conditions.  Like some previous models of diurnal evolution, such as HELHEM, this 
model was tailored primarily for the southern New Mexico area and may require modification 
for more general applications. 

The vertical structure model then consists of equations combining effects of each layer combined 
into a total form in the following equation1:   

C zn
N z z2 210

2

( ) ( ) ( )/= +σ . 

Inputs to the model include the time of day and month of year, cloud cover fraction, and surface 
meteorological measurements of wind speed, temperature, and an estimate of the current Cn

2 
strength.  Since this last value is not normally available, we intend to extend the HELHEM 
model to provide an estimate of Cn

2 based on local weather, terrain, and time of day conditions. 

The preceding equation also requires information concerning the log-normal distribution of 
turbulence strength.  This is because log-mean Cn

2 is not the same as the average Cn
2.  The two 

are related through the form of the log-normal distribution.  The variance of this distribution is 
required to determine the mean Cn

2 based on log-mean statistics that arise from models such as 
CLEAR and AMOS. 

We conclude with the result that our efforts have produced a tailored, small, rapidly executing 
algorithm and associated tables for predicting turbulence: a log-mean vertical layer prediction, 
and a methodology for conversion of log-mean statistics to a mean Cn

2 profile required for 
assessing turbulence effects on simulated sensors in wargames.  Further efforts will focus on 
temporal evolution of the turbulence strength and the influences of weather and terrain. 

 

 

                                                 
1 This is equation 47 that can be found on page 37 in the report. 
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1. Introduction  

For many Army systems a primary goal is to increase the standoff range at which the enemy may 
be detected, identified, and engaged.  Army electro-optical systems are continually being 
improved to increase their range and performance.  However, as engagement range increases, 
effects of optical turbulence also increase.  In general greater turbulence effects are experienced 
by shorter wavelength systems as well.  Nonetheless, due to their greater resolution, shorter 
wavelength systems are being considered for Army use.  Therefore, for proper comparison 
purposes it seems reasonable to factor in the effects of turbulence to predictions of system 
performance in future Army wargaming models.   

The most basic quantity characterizing the strength of atmospheric turbulence is the refractive 
index structure parameter, Cn

2.  The main source of this turbulent energy is the mixing of air 
masses of different densities.  Such mixing is primarily driven by surface heating and cooling.  
At higher altitudes it is also driven by the mixing of air masses of different density due to wind 
shear, vertical convective motions, and/or wave action.  To characterize the effects of turbulence 
in any given situation usually depends on evaluating a parameter of interest along a specific line-
of-sight (LOS).  The Cn

2 parameter is ubiquitous in its presence in these various integrals.  
Integrals are available to characterize turbulence effects on such propagation effects as image 
blur, apparent motion, laser beam divergence, scintillation, and beam wander.  Cn

2 is sometimes 
referred to as the refractive index structure constant, but it is far from constant.  Rather, Cn

2 
fluctuates by orders of magnitude over the course of a single day at heights close to the surface.  
This region is called the surface layer, consisting of the first 20–200 m of atmosphere above the 
earth’s surface.  Besides being a function of time, Cn

2 is also a function of height and horizontal 
position.  Cn

2 drops in value rapidly as a function of height during the day.  This means that the 
amount of turbulence encountered depends critically on the height of the LOS above the terrain 
and thus requires individual calculations for each unique target-to-observer geometry.  We will 
discuss these LOS integrals again in section 1.1.   

Of more direct concern in this report is the means of evaluating the vertical structure of Cn
2 itself.  

Because of varied production mechanisms, the structure of turbulence changes character with 
height above the ground.  To model the vertical variations of Cn

2 we thus have to account for 
these different mechanisms through representative profiles of Cn

2 that change in form with 
height.  Nevertheless, the model proposed is rather simplified since we do not attempt to 
correlate such profiles to other atmospheric forcing parameters.  For instance, we do not consider 
the stratospheric inversion at the top of the troposphere, the influence of the jet stream, gravity 
waves, turbulent plumes, cloud cover, the elevated inversion during the day, the structure of the 
surface based inversion at night, or surface visibility, though each of these has an influence on 
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the value of the Cn
2 at the ground, its vertical structure aloft, and its evolution with time.  For 

such a complete model, considerable additional research would be necessary. 

For our purposes we propose to provide not a complete physical model, but rather a profile 
which is characteristic of the vertical structure.  In this sense, we hope to provide a seamless 
profiling method that ranges from the earth’s surface up to the top of the troposphere.  While not 
perfect, it should provide sufficient fidelity to be useful under a variety of atmospheric 
conditions.  The height domain chosen for these models supports characterization of turbulence 
effects for the complete range of Army systems that may appear in Army simulations.  Many 
Army systems operate within the first few meters above the earth’s surface.  These include the 
full assortment of light and heavy Army forces.  Helicopters operate further from the surface, but 
within the boundary layer atmosphere which can extend up to 2–3 km above ground level 
(AGL).  Unmanned Aerial Vehicles (UAVs) operate up to thousands of feet above the surface, 
but still within the troposphere.  Vertical profiles of Cn

2 must therefore be available to 
characterize these various regimes in a seamless manner, starting at the ground and continuing 
into the upper troposphere.  While various standard profiles exist (see Beland, 1993, for an 
extensive discussion) most existing models represent a patchwork of vertical structures covering 
various sections of the vertical regime, but none currently seem to address the profile as a whole.  
An exception to this observation appears to be the Hufnagel-Valley (H-V) model, which we will 
discuss.  However, there are certain significant concerns regarding the validity of this model as it 
applies to the boundary layer atmosphere.  As a consequence, we will consider a new model of 
the vertical structure of turbulence. 

The first step in this development is to examine various legacy turbulence profile models.  We 
then extract features from several of these to synthesize a single new model which is capable of 
simulating a complete vertical profile of the troposphere.  The proposed profile model includes 
features that adjust for arbitrary surface measured turbulence levels and stability.  The model is 
thus compatible with surface layer dynamic similarity theory (Wyngaard, 1973).  This surface 
layer model is then integrated into a daytime boundary layer model first proposed by Kaimal  
et al. (1976).  However, a nighttime version of the Kaimal model was never proposed.  We use 
similarity model surface layer behavior to infer vertical structure beyond the surface layer that is 
consistent with the Air Force’s Maui Opitical Station (AMOS) profile model (Beland et al., 
1988) used to characterize the AMOS and Critical Laser Enhancing Atmospheric Research I 
(CLEAR I) night models, as reported by Beland (1993).  This links the boundary layer interface 
to the upper troposphere.  The CLEAR I profile was based on measurements made in the 
Tularosa Basin area of southern New Mexico (Garvey et al., 1985), part of the high altitude 
Chihuahuan desert.  As a point of reference, models appropriate for this area should also be 
typical of other mid-latitude desert regions. 

We also discuss perturbations in Cn
2 about the log-10-mean values given by the vertical profile 

model.  The rationale here is that the LOS integrals of turbulence effects involve the actual 
values of Cn

2 along the path, while the available models only provide a log-10-mean Cn
2 value.  
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As will be shown, when considering a log-normally distributed variable, first the variance of the 
distribution in the log space affects the calculation of the mean in the scalar space.  Secondly, 
when considering a single LOS, temporally varying Cn

2 can cause fluctuations in acquisition 
performance due to variability in the clarity of an observed target image.  These variations may 
affect the pace of a simulated battle or differentiate the performance of otherwise identically 
functioning systems.  The statistics of Cn

2 temporal variability are thus necessary.  We will 
discuss these temporal variations for surface-to-surface situations only. 

1.1 Parameters of Interest 

As illustrations of how Cn
2 is employed we consider two parameters often used to characterize 

turbulence effects on systems: the turbulent coherence length, 0ρ  [m], and the isoplanatic patch 
size, 0θ  [mrad].  These two parameters are closely related.  The first is used in studying blur 
effects on receiver systems.  The second is used in astronomical applications to determine an 
angular distance at which two moving points appear to shift position in unison.  Outside the 
angle 0θ  two stars, for example, will appear to move as separately moving points of light.  It is 
said that the wavefront from two such apparently separately moving objects has become 
anisoplanatic. 

We evaluate these parameters via integrals over the optical path starting at  at the receiver 
end of the path, to 

0=z
Lz =  at the object end of the path, and we assume (for now) the turbulence 

spectrum has a Kolmogorov form (zero inner scale, infinite outer scale).  The two parameters 0ρ  
and 0θ  are written in integral form as (Beland, 1993, equation 2.135), 

( )
5/3

0

3/522
0 /1)sec(46.1

−

⎥⎦
⎤

⎢⎣
⎡ −= ∫

L

n dsLsCk ϕρ ,   (1) 

where Cn
2(s) is the turbulence as a function of path position  [m], s L  is again the path length 

[m], and λπ /2=k  is the radiation wavenumber [m-1] is the radiation wavelength [m]), and  
(Beland, 1993, equation 2.170), 

5/3

0

3/523/82
0 )()(sec91.2

−

⎥⎦
⎤

⎢⎣
⎡= ∫

L

n dsssCk ϕθ ,   (2) 

where ϕ  is the zenith angle of the observation direction from the observer to the target.  Most 
astronomical applications take 0=ϕ  to represent a vertical path.  Thereby 1)sec( =ϕ .  If it is 
further assumed that the object of interest (target) is above the top of the atmosphere, then 0ρ  
simplifies to an evaluation of  

5/3

0

22
0 )sec(46.1

−

⎥⎦
⎤

⎢⎣
⎡= ∫

TL

n dsCk ϕρ ,      (3) 

where  is the range to the top of the atmosphere as opposed to the range to the target itself. TL 0θ  
similarly reduces to, 
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5/3

0

3/523/82
0 )()(sec91.2

−

⎥⎦
⎤

⎢⎣
⎡= ∫

TL

n dsssCk ϕθ .   (4) 

Because of the different weighting functions involved, 0ρ  will tend to be affected by the 
turbulence closest to it, while 0θ  will be either most affected by turbulence weighted toward the 
top of the atmosphere (astronomical case) or toward the target.  On the other hand, systems 
affected most by scintillation (active sensors) will be most affected by turbulence near the center 
of the path.  Hence, evaluations of turbulence impacts depend on effects at different points along 
the path for different sensors.  Path integrations are thus crucial to determining the specific 
turbulence effects on individual sensors.  But for the specific case of passive imaging sensors we 
can characterize most of the turbulence effects using the single parameter of 0ρ , the coherence 
length.  We consider this issue in detail in section 8. 

1.2 The Hufnagel-Valley Profile 

As an example of a vertical profile model, we consider the H-V model.  This model (Beland, 
1993), consists of an amalgamation of the original Hufnagel (1974) model, and its extension to 
the ground by Ulrich (1988), based on a suggestion by Valley (1980).  We choose this model to 
begin our investigations because it is very well known and often cited (Beland, 1993; 
Roggemann and Welsh, 1996; Andrews and Phillips, 1998; Andrews et al., 2001).  Two reasons 
appear to explain the popularity of this model.  First, it is rather simple.  Featuring only two 
parameters to manipulate, the H-V model can be described using only a surface level value of 
Cn

2 [Cn
2(0)], and an upper level wind speed, U, given as the Root Mean Square (rms) windspeed 

[m/s] averaged over the 5–20 km AGL range.  The H-V model has a very simple form: 

).10exp()0()5.1/exp(10700.2)exp(10148.8)( 216102262 ZCZZZUzC nn −+−×+−×= −−  (5) 

with Z the height AGL in kilometers.   

Second, the H-V model features a standard implementation, the so-called H-V 5/7 model, for 
which integrated 0ρ  and 0θ  yield the typical 50 =ρ cm and μθ 70 = rad values commonly 
assumed for nighttime conditions in the field of astronomy (hence, the 5/7).  These results, 
assuming a vertical path integration, and propagation wavelength μλ 5.0= m, 
Cn

2(0)=1.7 m1410−× -2/3, and U=21m/s.  For many nighttime astronomical observation conditions, 
these results are indeed typical.  But the H-V model is less well equipped to treat other times of 
the day.  Particularly for daytime conditions a better model must be sought.  The Kaimal model’s 
consideration of the boundary layer inversion’s impact on Cn

2 appears better suited to describing 
the daytime elevated inversion.  This model predicts a turbulence increase at the base of the 
elevated inversion layer.  The daytime atmosphere will also feature extremes of turbulence in the 
surface layer immediately next to the ground.  Wyngaard (1973) indicates vertical structures of 
turbulence should be scaled according to the Monin-Obukhov length ( ) in the surface layer ObL
through the dimensionless ratio  where  is height above the surface [m].  Further from ObLz / , z
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the surface )( ObLz > , the daytim tical Ce ver d
.  

z  
of Wyngaard.  

he 

)exp()100/()100 3/73/4 −− −=−−− zBzAzz  (6) 

The match height is z=133 m AGL.  Below this height the daytime atmosphere has greater Cn
2 

2. General Profile Characteristics  

n
2 ecreases via a 3/4−z  power law.  Under neutral 

conditions Wyngaard indicates a 3/2−z  power law and a 0z  law for stable (nighttime) conditions
Comparing these rules for the so-called free convection region of the boundary layer 
(approximately 100–1000 m AGL) one finds that the H-V model’s lead term exp(A −

does not match well against either the daytime or nighttime profile conditions 
Particularly, the predicted 0z  nighttime behavior does not match the H-V model at all, while t
daytime 3/4−z  behavior can only be matched to the H-V model behavior at a single height, 
through  

)100/

/4(100/;/exp( = BA .)3

and higher gradients.  A similar result is obtained under neutral conditions, except that the 
matching height is z = 67 m AGL.  In either case, the lack of a correspondence to existing 
surface layer behavior indicates the H-V model is not well adapted for near ground-level 
applications. 

In this section we consider more carefully the nature of vertical structure profiles of the log-mean 

 
y, the 

 

 

 
han 

re 

Cn
2.  As illustrated by the H-V profile, smoothly varying functions of Cn

2 variability with altitude 
in the upper troposphere are available.  In fact, much work was done in the early-to-mid-1980’s.  
The emphasis in that era was largely on earth-to-space applications.  Our focus is somewhat 
more limited, yet still considers most of the troposphere where a majority of the turbulent 
influences arise.  We begin with the first few kilometers of the lower troposphere, a region
termed the boundary layer or sometimes called the planetary boundary layer.  During the da
upper boundary of this layer usually consists of an elevated capping inversion.  Part of the effect 
of this cap is to keep a layer of aerosols trapped underneath this inversion level.  Air heated at the
surface tends to move vertically through the boundary layer, often augmented in its transport 
vertically by turbulent plumes powered by intense surface heating which causes a very steep 
temperature lapse rate in the lower few hundred feet of the atmosphere.  These plumes, if they
are strong enough, can sweep up dust, sand, and debris from the surface in desert regions, 
becoming visible as dust devils.  The boundary layer thus tends to select efficient means of
transporting of heat through the layer, depositing this heat into the capping inversion rather t
heating the air between.  Nevertheless, due to entrainment and air recirculation, over time the 
boundary layer becomes mixed.  Adjacent to the surface, a layer develops which may be 
characterized by dynamic similarity theory (Haugen, 1973).  The properties of this layer a
dominated by drag effects of the ground.  Their chief scaling parameter is distance from the 
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surface, z, and scaling length LOb.  This length scales the height dependence of nearly every 
mean parameter (wind speed, temperature, humidity, etc.), including Cn

2.   

The nature of this surface layer is such that a predawn surface based inversion (region 1 of  
ure 

 

 base 

gion 
 

f 

 

rnal 
l 

figure 1) is replaced by a superadiabatic lapse condition (negative vertical potential temperat
gradients up to the base of the entrainment zone) (region 2 in figure 1).  The ambient temperature
reaches a local minimum at this height (Zi [km]) which also marks the base of an elevated 
inversion layer.  As surface heating continues throughout the day, the level of the inversion
rises, reaching a maximum at the time of the evening neutral event (region 3 of figure 1).  Such 
an event marks a time of minimum turbulent activity within the boundary layer.  The layer 
becomes adiabatic (constant potential temperature with height).  However, as denoted by re
3 in figure 1, this event may occur at different times within the layer since the upper levels of the
layer may still contain residual fluctuations of temperature even after the surface has become 
stable.  At the ground, the atmosphere then develops a new surface based inversion (region 4 o
figure 1), which builds in depth throughout the night.  But unlike the daytime atmosphere which 
reaches a maximum height around mid afternoon, the nocturnal stable layer continues to increase
in height through the evening.  Partly this is due to the energy fluxes controlling the layer 
development and partly due to the wind speed evolution which is often driven by the noctu
low level jet phenomenon which has a time scale longer (on the order of 17 hours) than a typica
stable period.  Note that in figure 1 height is not to scale. 

 

Figure 1.  Canonical development of the boundary layer over a diurnal period.   
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The structure of turbulence within the daytime boundary layer involves a general decrease in Cn
2 

with height for the first several hundreds of meters.  However, due to the mixing of warm and 
colder air masses near the inversion layer, there is a turbulence increase near the elevated 
inversion.  Likewise, at night, turbulence near the surface decreases with height, though not as 
strongly as during the day.  Because of gravity wave activity within the boundary layer, which 
behaves somewhat like a waveguide, the motions of waves and propagating energy are confined 
to the surface layer, and the fluctuations of temperature within the boundary layer are modeled as 
roughly constant with height starting at the surface layer.  The vertical mixing that occurs within 
the inversion layers (day or night) tends to both increase the depth of the boundary layer 
atmosphere as well as cause increased turbulence in the vicinity of the inversion (again day or 
night).  Once above the inversion the atmosphere is approximately neutral, or adiabatic (constant 
average potential temperature θ  with height), up to the level of the tropopause where the effects 
of the stratospheric inversion layer are felt.  Within this neutral layer, the turbulence level drops 
with increasing altitude due to declining pressure and temperature levels (as discussed in section 
4.2).  At the base of the stratospheric capping inversion, models such as H-V, CLEAR I, and 
AMOS all agree that the profile should exhibit increased turbulence (a {\it bump}).  For the H-V 
profile this bump appears as the first term in the expression in equation 5.  In this case the bump 
appears around 11 km.  The CLEAR I and AMOS models, discussed in section 6, exhibit 
analogous increases around 15 km. 

3. Log-Normal Distributions  

Having discussed the general vertical properties of the tropospheric atmosphere, we also 
consider the nature of statistical fluctuations of turbulence along any particular LOS.  For 
horizontal near-surface LOSs these statistics impact the temporal variability of intervisibility 
along a given line.  For LOSs involving UAVs looking downward to objects near the ground, an 
LOS will pass through a number of statistically independent layers of different Cn

2 value.  
However, because the Cn

2 statistics above the surface layer are generally horizontally 
homogeneous, they will not vary significantly with time or position as long as the observation 
altitude does not vary.  Hence, we must treat these two cases as separate but related problems, 
involving the same statistical properties of the turbulence. 

In the first case, we consider temporal variations in the amount of turbulence along a single path.  
The performance of a specific acquisition task may thus produce varied results, depending on the 
strength of turbulence currently present along the LOS.  Since the turbulence level will tend to 
fluctuate by up to rd3/1±  of an order of magnitude, the effect of the variation of turbulence will 
vary the size of the coherence length by a scale factor ranging from 1.0 to 2.5.  The time scale of 
these variations appears to be on the order of 10’s of seconds.  The effect these fluctuations will 
have depends on the ratio of 0ρ  to the system entrance aperture diameter, .  The knee of the D
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atmospheric modulation transfer function (MTF) curve is located around 6/ 0 == ργ D  or 
3/ 0 ≈= rDγ  (where  is the Fried coherence diameter (0r 00 1.2 ρ=r )).  For 6>γ  the system 

will be significantly affected by the turbulence.  For 6<γ  the turbulence impact will be 
marginal.  For variations of 0ρ  with 6>γ , the impact of temporal fluctuations in Cn

2 will cause 
significant temporal variations in performance.  Since , there will always be some 
range of significance where these effects will be pronounced, however, it may be beyond the 
effective range of the system in question.  On the other hand, for given range (

5/3
0

−∝ Lρ

L ) and 
wavelength (λ ), there will also always be an equivalent Cn

2 value where these effects become 
significant. 

To model LOS turbulence intensity variations we must know both the probability density 
function (e.g., Stark and Woods, 1986) for Cn

2 and have some knowledge of the autocorrelation 
to determine when to make a new independent random draw on the Cn

2 distribution.  To first 
order the distribution of Cn

2 near the ground appears to be log-normal.  In log space, therefore, 
Cn

2 may be characterized by a mean and a standard deviation.  An example of this behavior is 
illustrated in figure 2.  The data plotted represent measured Cn

2 fluctuations over a 950 m path 
that was approximately 4 m AGL.  Data were tabulated over a period of approximately two 
hours to produce the distribution.  Over that time the Cn

2 mean value was roughly constant.  The 
raw data were then transformed into a probability density function in log-10 space.  Probability 
data were plotted in increments of 0.01 in log-10-space.  The data were collected on June 21, 
2001, at the “Tank Tower” located approximately 5 miles east of the headquarters area of White 
Sands Missile Range (WSMR), NM.  The data plotted in figure 2 with computed log-mean Cn

2 
of -13.3186, were modeled using a log-normal distribution of Cn

2 with log-mean of -13.295 and 
log-standard deviation of 0.215. 

 

Figure 2.  Comparison between measured Cn
2 data and modeled log-normal  

distribution of Cn
2 data.   
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In addition to the data, a log-normal distribution curve is plotted for comparison to the data.  
Analysis of the measured data indicated a log-10-mean value of -13.3186 (Cn

2 = 4.8 ), and 
a log-standard deviation of 0.215.  However, as seen from the comparison between the plotted 
data and the theoretical log-normal curve, there is a slight skewness in the measured distribution.  
A better fit to the peak region of the data (as plotted) is obtained using an adjusted log-mean C

1410−×

n
2 

value of -13.295 (Cn
2 = 5.1 ).    1410−×

The true Cn
2 distribution may or may not be log-normal.  Further measurements are needed to 

establish whether observed skewness is characteristic of ensemble distribution deviations or 
simply anecdotal.  Theoretically, there is some foundation for considering this assumption to be 
the correct one:  The refractive index spectrum clearly exhibits power law dependence in its 
inertial subrange.  Many of the factors controlling the strength of turbulence appear to be 
multiplicative in nature (additive in log space).  Factors include wind driven mixing of air 
masses, solar radiation modulated by cloud cover, and surface reflectivity.  Hence, Cn

2 variations 
could well represent a summation of log variable terms.  Further, as discussed by Tatarskii 
(1961), the Rytov method is based on a log-amplitude analysis in evaluating propagation effects.  
Combining a series of along-path and environmental multiplicative effects and invoking the 
central limit theorem produces a Gaussian distribution in log space, to first order. 

From a practical viewpoint, log coordinates are commonly used in plotting Cn
2.  Considering 

vertical variations this is most reasonable because Cn
2 is proportional to pressure squared.  Since 

pressure is approximately a logarithmic function of height, Cn
2 will also logarithmically decrease 

with height.  Cn
2 is also a positive definite quantity.  Plotting it in log space thus ensures that this 

condition is never violated.  Lastly, Cn
2 measured near the surface often ranges over orders of 

magnitude over a diurnal cycle.  Again, its natural environment is as a log variable.  We will thus 
continue to employ a log-normal assumption until and unless it is shown to be untenable.  
Naturally, we will plot Cn

2 in terms of its log-mean.  We express this using the expectation 
operator: )(log 2

10 nCK = .  The angle brackets represent an ensemble average.  By this we mean 

the average of all realizations of Cn
2 for a particular atmospheric condition. 

The use of a log-normal distribution permits writing analytic forms for moments of the 
distribution, and the conversion of those forms to the scalar space used for performing the path 
integrations of equations 1–4.  The log-normal distribution function for Cn

2 and a log variable x  
is written as, 

.
2

)(exp
2

1)( 2

2

⎥
⎦

⎤
⎢
⎣

⎡ −
−=

σ
α

σπ
xxp      (7) 

Here, natural-log-based x  has log-mean α  and log-standard deviation σ .  This density function 
is given as it appears in log space.  To express the mean of this distribution in the linear space, 
define variable .  The mean of  is found by integrating over the distribution and 
weighting this integral by : 

)exp(xy = y
y
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Here, we note that y  depends on both α  and σ .  This occurs because positive and negative 

fluctuations about the mean in log space do not have offsetting effects in linear space.  Instead, 
asymmetries result, reflected by the offset term [ ].2/exp 2σ+  

Normally, Cn
2 is not given in terms of a natural-log variable.  To transform to a base-10 

logarithmic system we introduce the variable ;  with )'exp()]10ln('exp[10 ' xxw x β===
302585.2)10ln( ≈=β .  Variable  can be related to the natural-log exponent 'x x  through: 

β/' xx = .  With this substitution, the two systems can be compared by studying the probability 
that random variable X  is between 2/dxx −  and 2/dxx + .  The two probabilities should be 
equal in both systems, whereby, 

'.)'(
'2

'
'2
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/2
/

/2
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The form of the probability density function is thus invariant under the transformation .   'xx →

Nevertheless, the expression for mean w  becomes, 

.10
2

'exp
2

exp')'()'( ]2/''[
222

2βσασββασα +∞+

∞−
=⎥

⎦

⎤
⎢
⎣

⎡
+=⎥

⎦

⎤
⎢
⎣

⎡
+== ∫ dxxpxww   (10) 

Here, w  is the mean value in scalar space, while 'α  and 'σ  are statistics in log-base-10 

representations, such as were evaluated based on the data shown in figure 2. 

Let us now consider our application cases.  In the first case we consider an LOS nearly 
horizontal to the ground.  Given this LOS, and observer and target heights, we may evaluate a 
log-mean Cn

2.  We then make a random draw on a zero mean Gaussian distribution, scale this 
result by the log-standard deviation of the fluctuations, add the log-mean Cn

2, and raise the result 
to a power of 10.  Alternatively, rather than exponentiating (a relatively expensive calculation), 
we may simply do a table lookup given the log-value of the Monte Carlo generated Cn

2.  From 
figure 2 we have a sample value of β  (more will be discussed regarding this value).  We then 
need values of mean Cn

2 along the path.  This is the subject of much of the remainder of this 
report. 

In the second case, we consider downward looking paths involving observing UAV platforms.  
In this case we assume that we are looking through enough statistically independent regions of 
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turbulence that the fluctuations will average out to ignorable fluctuations in the overall statistics.  
Thus, all that is needed is the average Cn

2 along the path, which necessarily requires inclusion of 
the factor [ ]2/exp 2σ  in calculating the final mean value.  From data plotted in Beland (1993), 
we find that each of these statistically independent regions is approximately a layer 200–300 m 
thick.  A UAV flying at 2 km (6000 ft) AGL would be viewing the surface through 6–10 of these 
independent regions and thus would experience far less variations than ground-to-ground 
viewers. 

To see this reduction in fluctuations explicitly, consider a downward view geometry in which the 
LOS passes through  statistically independent sections of the atmosphere.  We can then 
evaluate the average C

N
n

2 over the path in a manner similar to the means of averaging the variable 
 above.  The net standard deviation (w wσ ) of  is found through direct evaluation using the 

rules for translating the log-normal statistics to the scalar realm: 
w

[ ] [ ].1)exp(1)exp()2exp(

)2/exp()2/exp()22exp(
2222

222222

−=−+=

++−+=−=

σσσα

σασασασ

w

www   (11.A) 

Taking the root, 

,'1)exp( 2 wwww σβσσσ =≈−=     (11.B) 

assuming small σ , such that 1'<<σβ .   

As an example of the accuracy of this approximation we consider the value 215.0'=σ  found 
from the data plotted in figure 1.  We then have 495.0=σ  and ww 527.0=σ .  In this case the 

approximate method is 6% in disparity from the exact formula.  However, 6% is not particularly 
significant since the error in estimating mean Cn

2 (as observed in typical thermosonde data) is 
usually around 0.1 in log-10-space terms, or about a 26% linear space variation.   

Using this approach we can translate from the log space representation to the linear space and 
apply the central limit theorem in handling the fluctuations over a path segment composed of  
independent sample regions.  From the central limit theorem we take the original independent 
sample standard deviation (

N

wσ ) and create a net effective standard deviation over the entire 

segment, Nww /' σσ = .  Here, we express  as the number of independent height increments,  
( m) based on the height difference between the observer and observed objects, 

N
300/HN Δ≈

HΔ , and 300 m is a height increment over which Cn
2 obeys roughly uniform statistics of log-

mean and log-variance, the aforementioned vertical correlation distance of “a few hundred 
meters.” 

We can use these statistics to either generate a single random variable representing the effective 
Cn

2 over a single altitude interval or adopt a mean Cn
2 value over an altitude range as long as the 
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number of independent intervals  is assumed large enough to sufficiently suppress the 
variance of C

N
n

2 over the interval.  As an example, it will be shown that the mean Cn
2 over the 

interval 10–15 km AGL is roughly constant.  Over this interval up to 16 independent segments 
with roughly constant Cn

2 are present.  The 'wσ  for a path that spanning this region would thus 
be reduced roughly by a factor of 4 relative to a very short path within this region.  The reduction 
is due to path averaging and is primarily for vertically oriented paths.  For a log space standard 
deviation of roughly 1/2 a decade, we thus expect 27.0'≈wσ ; that is, an average Cn

2  around 
 with a ± 27% variation.  We consider this value of C1710 −

n
2  to be relatively low compared to 

typical near-earth propagation paths.  It may thus be feasible to handle the upper atmosphere 
using only mean values, reserving more explicit handling of path variability to LOSs close to the 
ground where fluctuation effects may have significant impacts.  This is particularly important 
because ground-to-ground LOSs will be relatively short and thus will not experience Cn

2 

variations much less than those observed in figure 2. 

Also in figure 2, we note that the LOS was 950 m, at a 4 m height above surface over nearly flat 
terrain.  For such a path we may evaluate the outer scale length of turbulence representing the 
longest correlations in the turbulent field.  Analysis indicates this length is at most 100–200 m.  
Hence this 950 m path represents several coherence length intervals already.  We thus may infer 
that for longer LOSs we can use the 950 m length result as a standard, and we can generate 
an  tailored for a nearly horizontal propagation path scenario of  hNN =

[ ]2)950/(1 LINTN h +≈  .     (12) 

This equation provides reasonable asymptotic behaviors that result in , as , and 
, as , as required. 

1→hN 0→L
950/LNh → 950>>L

To conclude this section, if we know what the log space Cn
2 distribution function looks like (in 

particular, if we know its log space standard deviation), then we can correct its mean value 
prediction in linear space by offsetting it by the factor .  Information available from 
vertical profile measurements of C

)2/exp( 2σ

n
2 taken in New Mexico (such as data presented in Beland's, 

1993, figures 2.14 and 2.15) indicates variability of Cn
2 by factors of around 2 to 3 throughout its 

entire range.  Further evidence from Kunkel et al. (1981) indicates the main increases in 
variability occur near the boundary layer inversion.  This likely occurs at night as well, and may 
indeed explain why modeling the nocturnal inversion in the boundary layer has produced so 
many uncertainties in the past. 
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4. The Surface Layer  

Now that we have discussed the general nature of the Cn
2  probability density function, as well as 

general vertical model features, we are prepared to discuss the various segments of the 
atmosphere and model each segment.  To do so, we need to understand the dominant physical 
processes in each altitude region.  Typically, meteorologists begin by describing the largest scale 
effects and progress toward the smallest energy and size scales.  However, for turbulence, 
surface based small scale effects are critical.  We therefore begin our discussion at the ground 
and progress upward through the boundary layer and into the upper troposphere.  This approach 
reflects the daytime behavior of vertical Cn

2 structure in that the surface value of Cn
2 actually 

drives the turbulence profile throughout the surface layer and into the boundary layer.  On the 
other hand, behaviors in the upper troposphere are relatively insensitive to surface values, but 
still need to be coupled into the lower tropospheric model of Cn

2. 

Ultimately, we need to consider two different coupling models between the boundary layer and 
the upper troposphere.  Currently, we only know the form of this coupling for the daytime case, 
which is the focus of this first report.  However, in the surface layer, that portion of atmosphere 
from the ground up to approximately 100 m, we can describe two different vertical profile 
models: a stable (nighttime) model and an unstable (daytime) case.  The terms stable and 
unstable relate to the effects of buoyancy.  During the day, displaced parcels of air tend to 
accelerate vertically away from their altitude of origin (they are unstable).  At night, the ground 
is colder than the air above, due to surface radiative cooling, and parcels displaced vertically tend 
to oscillate about their height of origin.  They exhibit stable vertical motion.  However, from a 
modeling viewpoint, almost exactly the opposite is true.  Due to the instability of air masses 
during the daytime, the boundary layer atmosphere becomes well mixed, and can therefore be 
much more easily characterized.  Conversely, at night, due to the stability, different levels of the 
atmosphere become decoupled and small localized sources of energy perturbations (wave action, 
radiative emission, terrain discontinuities, etc.) become significant as the motions appear to fall 
into dynamically chaotic patterns.  Hence, we currently will focus on only the daytime model 
once outside the surface layer. 

We therefore begin characterizing the atmosphere starting at the bottom and progressing upward 
through the boundary layer to the upper troposphere.  Previously, we found that Wyngaard's 
daytime free-convection model matched the H-V model at 133 m.  Below this altitude the 
H-V model shows only moderate increases of C

3/4−z
n

2 as one approaches the surface while the free-
convection model shows Cn

2 increasing significantly toward the ground.  This is our region of 
key interest since it is where most land combat occurs.  We will apply similarity theory (Haugen, 
1973) to describe the variation of Cn

2 with height in this region.  Wyngaard (1973) provides us 
with the height dependence  
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within this region during the unstable (daytime) conditions (where 0<ObL ), and 
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under stable (night) conditions ( ).   0>ObL

During the day Cn
2 assumes a height dependence for distances significantly above the 

surface.  At night, C

3/4−z
n
2 takes on a vertical structure of  at3/2−z 0=z , but rapidly decays to an 

approximately z-independent structure for large z.  Under neutral density conditions LOb ±∞→ , 
resulting in  height dependence.  However, the main problem in the surface layer is not in 
determining the height dependence, which is given, but rather in determining L

3/2−z
Ob, which is 

stability related.  This parameter is usually derived based on other measured meteorological 
measurements.  We must therefore consider its evaluation in detail in the next section. 

4.1 Similarity Theory 

Similarity theory assumes wind and temperature profiles near the surface are similar under 
comparable stability conditions.  It is also assumed that certain stability-dependent derived 
quantities (scaling potential temperature *θ , friction velocity , and Monin-Obukhov length 
L

*u
Ob) parameterize the vertical structures of temperature and wind speed in the surface layer.  

These parameters are related to the vertical fluxes of sensible heat and momentum, both of which 
are considered to flow vertically at constant rates through the surface layer. 

Of these key parameter, the Monin-Obukhov length (or simply the Obukhov length) is 
fundamental in producing a dimensionless vertical parameter ObLz /=ζ .  To evaluate the 
Obukhov length, we begin with its canonical expression (e.g., Paulson, 1970): 

,
*

2

2
*

θ
θ

gk
uLOb =      (15) 

where  is the dimensionless von Karman's constant (a dimensionless coefficient having the 
value of approximately 0.4 over typical terrain).  The coefficient g is the acceleration due to 
gravity [9.8~m/s

k

2], and θ  is the potential temperature [K] at reference height .  For heights 
close to the surface 

rz
T≈θ .   
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Friction velocity  is defined as *u

,
)/ln( 10

* ψ−
=

zz
uku

r

     (16) 

where u  is the wind speed [m/s] at height ,  is the surface roughness height (the projected 
height at the wind profile indicates the speed should equal zero inside the roughness canopy.  
Usually  is given as a function of the height of the dominant vegetative elements (Hansen, 
1980).  Lastly, 

rz 0z

0z

1ψ  is the stability-dependent diabatic influence function of velocity.  It measures 
the deviation of the profile from log linear relationship. 

In a similar form, the scaling potential temperature is given by, 

20

0
* )/ln( ψ

θθ
θ

−
−

=
zzr

,     (17) 

where 0θ  is the air temperature at the roughness height,  and 2ψ  is the diabatic influence 
function of temperature.  Usually 0θ  is difficult to predict because it does not occur at a specific 
surface.  Rather, it is representative of the equivalent effects of the surface temperatures of the 
bare ground and foliage (leaf, stem, and twig) surfaces. 

The thickness of the surface atmospheric layer is approximately twice the Obukhov length.  
However, we expect that the surface layer will be considerably less than the overall depth of the 
boundary layer,  [m], technically the base height of the elevated inversion layer during the day, 
or the thickness of the surface-based inversion at night.  We use the symbology  to denote the 
same quantity measured in km.   

iz

iZ

To determine the typical range of values for the surface layer thickness, we estimate the 
Obukhov length under various atmospheric conditions.  Our estimation technique computes 
equations 15–17 while (for the moment) setting functions 1ψ  and 2ψ  to zero (their neutral 
condition limits).  We use reference height 2=rz m AGL and a roughness height of 50 =z cm.  
The latter value for profile data collected in approximately 1-m tall desert scrub taken in the 
same area associated with the turbulence data taken in figure 2.  Therefore, we find 

, which is relatively large compared to either of the 7.3)/ln( 0 ≈zzr ψ  correction terms.  Let us 
next consider typical wind speeds to range from 1 to 5 m/s.  We limit this range because larger 
wind speeds would suppress the temperature differential at the surface, while smaller wind 
speeds cause the results to diverge.  For this range of the parameters, we find  values between 
0.1–0.5 m/s. 

*u

For the range of *θ  we must consider what would be typical temperature differences during the 
day and night.  During the day, a temperature drop of 1–15 K (weak to strong) between the 
surface and 2 m is not unusual.  On the other hand, at night the temperature increase between the 

 15



 

surface and an observation height is not as strong because the energy exchange mechanisms at 
the surface are not as significant.  Consider, then, temperature increases between +1 K and +5 K 
(positive because the surface is colder than the air at 2 m).  For the sake of comparison we will 
also replace *θ  by ** θkT = , an alternative form of the scaling temperature sometimes found in 
the literature (e.g., Hoffert and Storch, 1979).  From equation 17, we find  varies from -1.5 K 
to +0.5 K. 

*T

Assuming 300≈≈ Tθ K, we construct table 1 to illustrate the range and variability of LOb. 

Table 1.  Range of Monin-Obukhov Variability with Surface State. 

** θkT =  
*u  

+0.5 +0.3 +0.1 -0.1 -0.3 -0.5 -0.7 -0.9 -1.1 -1.3 -1.5 
0.1 +1.53 +2.55 +7.65 -7.65 -2.55 -1.53 -1.09 -0.85 -0.70 -0.59 -0.51 
0.2 +6.12 +10.2 +30.6 -30.6 -10.2 -6.12 -4.37 -3.40 -2.78 -2.35 -2.04 
0.3 +13.8 +23.0 +68.9 -68.9 -23.0 -13.8 -9.84 -7.65 -6.26 -5.30 -4.59 
0.4 +24.5 +40.8 +122 -122 -40.8 -24.5 -17.5 -13.6 -11.1 -9.42 -8.16 
0.5 +38.3 +63.8 +191 -191 -63.8 -38.3 -27.3 -21.3 -17.4 -14.7 -12.8 

From table 1 we see that in almost all cases |LOb| << 100 m.  This implies that for the daytime 
case, the asymptotic  behavior given in equation 13 will be the norm for several hundreds 
of meters above the surface in the daytime mixed layer (this region is also referred to as the free-
convection layer) prior to experiencing the influence of the top of the boundary layer.  On the 
other hand, when |L

3/4−z

Ob| is of the order of , Ciz n
2 itself will have a relatively low value.  That is, 

low Cn
2 levels are synonymous with near-neutral conditions.  In these cases, the influence of 

turbulence will be low already, and hence our interest in its impact on sensor systems will be 
limited.  That is, the systems will likely be range limited by some effect other than the 
turbulence. 

At the opposite extreme, |LOb| < 2 m can only occur under very stable or unstable conditions.  In 
these cases caution is advised, as some model premises may have been violated.  In general, we 
also do not want |LOb| < , since the surface layer is only valid below ~2|Lrz Ob|.  The majority of 
these cases occur for low wind speeds.  The daytime mixed layer generally prevents such 
conditions from arising because as the boundary layer becomes unstable, convective circulations 
develop which tend to create their own winds regardless of the overall synoptic weather state. 

4.2 Minimum Parameter Calculations 

It seems from the discussion above that |LOb| never becomes really large.  In general its 
magnitude does not exceed 100 m.  Yet the problem of observationally evaluating LOb remains.  
Normally, one does not take measurements at more than one atmospheric level.  Hence, methods 
to evaluate LOb based on temperature and wind measurements are generally difficult to perform 
practically in the field.  We may relax these measurement requirements, however, by simplifying 
and constraining the conditions under which these calculations are made.   
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The goal of this paper is to provide a rapidly-executing turbulence profile model that operates 
from a limited set of input data.  We wish to use the Obukhov length to predict the vertical 
profile of Cn

2 in a wargaming environment, using a user-input value of Cn
2 at some convenient 

reference level .  Therefore, we will now show that all that is needed to evaluate the vertical 
structure within the surface layer is 3 parameters: wind speed, u  [m/s], a temperature, 

rz
T  [K], 

and a Cn
2 value [m ], all at the same reference height .  We also must know whether we are 

considering a daytime (lapse, unstable, L

3/2−
rz

Ob<0) condition or a nighttime (stable, LOb>0) 
condition, and the roughness length . 0z

We use the height of the dominant vegetation to estimate the roughness length parameter input, 
.  For example, at WSMR there may be several plant types occurring in a single area, and each 

has a separate average height, but there will be one that presents the most leaf surface area and 
consequently dominates the drag effects on the wind.  To evaluate , Hansen (1980) 
recommended the Kung (1961 and 1963) equation, 

0z

0z

,29.17/)ln(19.185.2)ln( 19.1
00 ee zzzz =→+−=  (18) 

where  is the average roughness element height [m].  Many authors also provide tables of 
roughness lengths (e.g., MacArthur and Haines, 1982). 

ez

The “neutral event'' crossover times defined as times at which the upwelling and downwelling 
surface heat fluxes are equal, are convenient temporal dividing lines between the daytime and 
nocturnal domains in the behavior of boundary layer turbulence.  Typically, clear sky neutral 
event conditions occur approximately 60 minutes after sunrise and 40 minutes prior to sunset. 

With all our required input parameters defined, we now relate LOb to Cn
2, , and u T .  To derive 

this relation, we begin by considering Wyngaard's (1973) full equations for CT
2:  
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Kunkel and Walters (1983) provided a means of converting CT
2 to Cn

2 : 

Cn
2  = CT

2 
2

4

22 03.01 ⎟
⎠
⎞

⎜
⎝
⎛ +

BT
PA ,    (20) 

where K/mb, and  is the Bowen ratio of sensible heat flux, , to 
latent heat of vaporization, , in the surface layer.  For the cases of interest here, the Bowen 

61079 −×=A lHHB s /= sH

lH
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ratio term may be ignored, because we assume 1>B .  Pressure ( P  [mb]) changes with elevation 
above sea level and weather conditions.  T  [K] changes as a function of height above the surface 
due to heating/cooling.  It is important to retain these terms in any equation of Cn

2.  Also, it is 
important to remember that this relation for Cn

2 is limited to the visible and infrared (IR) bands.  
We have ignored the effects of wavelength dependence in Cn

2 as these are relatively small and 
within the margin of error in Cn

2 itself.   

Although we retain the pressure dependence in the equation, we do not expect at any particular 
measurement site that P  will vary significantly under fair weather conditions.  That is, we 
expect  variations of only a few millibars.  As such, we do not expect pressure to significantly 
alter the calculation of C

P
n

2.  Instead, daily order of magnitude Cn
2 variations due to variations in 

heating conditions are viewed as the chief source of variation.  Thus, one can specify 
temperature, T , and site height above sea level (ASL) to estimate .  From these, and local time 
of day, one can estimate C

P
n

2.  CT
2 is then evaluated from equation 20.  We then use equation 19 

to predict , and, in combination with equations 16 and 15, predict L*T Ob based on T , , and Cu n
2.  

Eliminating CT
2 from equation 20 we obtain, 

Cn
2 ,)(9.4)/(F9.4)( 3/2

2

22

222

4
*3/2

2

22

2

2
*

rr
Ob

Obrrr Fz
T
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Lgk

uLzz
T

PA
T
Tz ζ−− ≈≈  (21) 

where we have invoked ObLz /=ζ , and, 
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Initially, we set )(ζF  to 1.0 (the neutral condition limit).  We then solve equation 21 for LOb to 
obtain, 

LOb ( )[ ]
9.41

/ln 3/122
0

2

rnr zCT
PA

zzg
uk

±≈ .    (23) 

The sign ambiguity arises when we take the square root of equation 21.  To eliminate this 
problem we introduce a unary stability condition operator, called ,1±=sπ  -1 for daytime 
(unstable atmospheric conditions), +1 at night (stable atmospheric conditions).  Predictions of 

sπ  can be based on local times and dates using local sunrise/sunset times and offsets to estimate 
neutral event transitions.  Adding this term to the right hand side (RHS) we obtain:  

LOb ( )[ ]
.9.41

/ln 3/122
0

2

rnr
s

zCT
PA

zzg
ukπ≈    (24) 
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Following this initial estimate, LOb is refined through an iterative technique.  In subsequent 
iterations, the previous LOb obtained is used to seed the  and  equations.  This 
technique was tested for a series of conditions.  Problems primarily arose in conjunction with 
near neutral conditions.  In these cases the number of iterations required to stabilize the results 
increased, but were still less than 100.  In most cases eight digit accuracy could be achieved in as 
little as 3–6 iterations.  For example, the unstable atmospheric case with 

)/( Obr LzF *u

1−=sπ ,  u = 5.7 m/s, 
T=294 K, and Cn

2 = m , stabilized within six iterations to an Obukhov length around 
m. 

1310−× 3/2−

6.41−≈ObL

Once LOb is evaluated, we can immediately evaluate , *T

,
2

*
*

ObLgk
Tu

T =       (25) 

and estimate the surface sensible heat flux, 

,
3

**
*

Ob
pps Lgk

Tu
cTucH ρρ −=−=  

where ρ  is the air density and  is the specific heat of air at constant pressure.  We include 

these last two relations for completeness because they suggest that the C
pc

n
2 may be considered an 

essential measured quantity rather than merely an inferred parameter. 

5. Convective Boundary Layer  

The remainder of the boundary layer that lies above the surface layer is characterized by the 
diurnal variation of its stability.  This layer has been called the “convective boundary layer'' 
(CBL) under daytime conditions due to the dominance of convective action.  However, it is often 
called the mixed layer because it features both upward and downward air motion associated with 
convective cell development.  Within the layer a nearly constant potential temperature vertical 
profile prevails.  The CBL's basic features are illustrated, for example, in figure 1.1 of Kaimal 
and Finnegan (1994).   

Under nocturnal conditions, the daytime boundary layer subdivides into two segments–a surface 
based inversion termed the “stable boundary layer'' (SBL), and a remnant of the daytime mixed 
layer representing the near adiabatic conditions termed the residual layer.  The SBL is not as well 
characterized as the CBL due to the complexity of processes that establish its structure.  We thus 
first discuss models and data relevant to analysis of the better understood CBL structure, and 
defer treatment of the SBL to a later section.   
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The vertical structure equations for the CBL are commonly expressed in two different forms (the 
Kaimal et al., 1976 and Kukharets and Tsvang, 1980 models), both mentioned by Beland (1993).  
The Kaimal et al. (1976) model (or KM model) first models the vertical structure of CT

2, and 
then converts from CT

2 to Cn
2 using equation 20 (which also implies knowledge of pressure and 

temperature profiles).  The KM model is expressed as: 
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where  [m] again denotes a reference level, and  [m] is the height of the elevated inversion 
base.  Typically the inversion occurs between 1–4 km AGL for New Mexico desert sites.  
Kaimal et al. (1976) compared this relation with data collected during the Kansas experiment 
(figure 7 of their paper), and the fit was very good.   

rz iz

Kunkel et al. (1981) also compared this model to measured data collected in southern New 
Mexico.  Their results, illustrated in figure 3 below, generally verify the KM model.  On the 
other hand, Burk (1981) and Moeng and Wyngaard (1984) compared the KM model against 
other data which tend to produce less reliable fits to this theoretical curve.  Moeng and 
Wyngaard indicate that the basic KM relation is really only a particular case of a more general 
relationship between the rate of entrainment of air moving vertically within the CBL and 
available fluctuation energy (including effects due to sensible heat fluxes and surface drag 
forces).  The Kunkel et al. (1981) data taken over southern New Mexico desert regions supports 
this observation by exhibiting greater log Cn

2 variance at and above the inversion base.  Such 
increase likely arises due to overshoot of warm air masses penetrating through the inversion base 
height.  The larger the buoyancy, driven by surface heating, the greater the momentum as the air 
reaches the inversion base.  On the other hand, entrainment would tend to dilute these buoyancy 
effects.  Also, due to momentum conservation, air must mix downward below , increasing 
turbulence slightly below the inversion base as well.  The KM model appears to do a good job of 
characterizing these desert effects for typical daytime desert atmospheric conditions. 

iz

However, the KM model does not provide information about the evolution of the daytime 
vertical structure starting from the morning inversion or its collapse prior to the evening neutral 
event.  Additional information on these evolutionary stages is available in the High Energy Laser 
Handbook Empirical Model (HELHEM) (Kunkel et al., 1984). 

HELHEM is a computer code written to implement vertical profiles or time series of Cn
2 as 

proposed in the High Energy Laser Propagation Handbook (Kunkel et al., 1984).  The model 
developed in the Handbook consists of empirical critical parameter data collected at various sites 
on WSMR, NM, and the algorithm whereby these data are combined into a Cn

2 profile at a given 
time of day or a diurnal time series of Cn

2 at a given altitude.  The algorithm calculates Cn
2 at a 
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reference level of 8 m AGL, using sinusoidal fits to climatological values for the 
daytime/nighttime maxima and neutral event minima.  

HELHEM extends the vertical scaling schemes detailed in the Handbook so that vertical profiles 
near neutral event times are evaluated and stellar scintillometer profiles of Cn

2 at high altitudes 
are accommodated.  Cn

2 values at atmospheric levels that lie between the diurnally varying 
boundary layer and the diurnally invariant (but seasonally changing) upper atmospheric levels 
are interpolated using criteria that depend upon time of day and the height of the inversion above 
the well-mixed layer.  Because HELHEM is empirical, its domain of validity is limited to the 
clear days, moderate wind speeds and dry soil that are characteristic of the WSMR environment.  
The database and methodology upon which HELHEM is based date back to the mid-1970s 
through mid-1980s.  The integration of this material into the current model will be the subject of 
a future effort.  Substantial changes include the conversion of HELHEM from the original Pascal 
language encoding and ensuring consistency with more recent measurements and theory. 

The KM model, a form of which exists in HELHEM, is a useful tool for describing the vertical 
structure of CT

2 within the boundary layer.  Unfortunately, the KM model and its supporting data 
in the Kaimal paper only consider altitudes up to the base of the elevated inversion layer.  The 
Kunkel et al. (1983) paper includes data extending to .  These data are useful in assessing 
an adaptation of the Kaimal model made by Kukharets and Tsvang (1980) (hereafter, KT) that 
uses a Gaussian function to model the increased C

iz5.1

T
2 at the inversion interface.  A comparison 

between the KM and KT models is illuminating.  In KM, a Cn
2 value is required at reference 

level .  In HELHEM this level is fixed at 8 m.  The user is permitted to input the inversion 
layer base height ( ), if known.  This quantity can be directly interpreted from an analysis of 
rawinsonde temperature data.  In lieu of this knowledge, we devote section 5.1 of this report to 
an analysis of archived WSMR  data sets.  Similarly, Kunkel et al. (1983) provide a number of 
referenced methods for estimating .  HELHEM encodes average layer depths for the WSMR 
area.  Both the KM and KT models require a knowledge of , but KT originally required a 
specific reference level value of C

rz

iz

iz

iz

iz
n

2 at height ix zz 1.0= .  Murphy et al. (1985) subsequently 
adapted the basic KT model for use with an arbitrary reference level.  The modified relation is 
then given by 
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In effect, the factor  renormalizes the input value of C( ) 3/410/ −
ri zz n

2 at  to the original KT 
model's  level.  We can express the KT Gaussian peak width in terms of a standard 

deviation, which we will call 

rz

ix zz 1.0=

KTσ .  We can write the exponential as [ ]{ }22 2/1.1exp KTizz σ−− , 

such that 5/24/ iiKT zz ≈=σ .   
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Comparison of the KM and KT profiles reveals that between  and  the KM profile 
increases by the factor 2.92, while between  and  the KM profile is constant.  At 

 the KT profile is 0.125 of its value at , and by  this factor increases to 0.163.  
The value increases further, to 0.578 at , a factor of 3.55 larger than its value at .  The 
relative increase factors between  and  are thus similar for the two profiles, but the KT 
profile continues to increase with altitude above  to its peak at .  This behavior does not 
fit well with data presented by Kunkel et al. (1981) (hereafter, simply Kunkel data) that clearly 
shows a peak around , followed quickly by a decreasing profile, essentially returning to 
the previous  minimum values by .  Burk (1981) shows similar behaviors for 
several data sets collected over ocean areas. 

iz7.0 iz

iz5.0 iz7.0

iz5.0 iz1.0 iz7.0

iz iz7.0

iz7.0 iz

iz iz1.1

iz95.0

iz7.05.0 − iz3.1

As presented by Beland (1993), the KT model was written for Cn
2 rather than CT

2.  We will 
attempt to use the concept introduced by KT of a Gaussian peak, but not focus on the exact 
functional form they suggest.  In particular, the width of the KT peak, as indicated above, is 

.  The Kunkel data suggest the Full-Width-Half-Max of the inversion peak in log 
space is approximately , or .  Data presented in Beland (1993) and 
Burk (1981) tend to corroborate this narrower peak.  Therefore, both the position and width of 
the peak in the KT model appear at variance with the measured data, but it should be noted that 
variations do occur in the measured data.  Nevertheless, we will use the Kunkel data as a guide 
along with adding a Gaussian peak in log space to characterize the impact of the increased 
turbulence at the elevated inversion height.  These considerations lead to the expression, 

5/iKT z≈σ
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where CTS
2 is the CT

2 value produced by surface layer equation (19), and )(zσ  is akin to the 
sigmoidal functions used in neural networks, given by, 

)exp(1
1)(

z
z

+
=σ .      (29) 

It has the properties 0)( →zσ  as +∞→z  and 1)( →zσ  as −∞→z .   

The net effect of these expressions is that the first term on the RHS of equation 29 generates the 
surface layer effect when near the ground.  The second term is the Gaussian at the inversion 
level.  The third term has the effect of neutralizing the general  height dependence above 
the inversion layer.  Figure 3 compares this proposed vertical profile with the Kaimal equations, 

3/4−z

the KT expression, and data presented in Kunkel et al. (1981).  In the figure CT
2 is presented in 
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normalized form according to its value at iz .  This comparison highlights the transition from the
C

 
T

2 constant zone between iz5.0  and i7.0  according to the Kaimal theory and the increased 
value at the inversion base. in fig that each curve’s data are normalized to the C

z
 Note ure 3 T

2 
values at the inversion base ( izz = ). 

 

Figure 3.  Kai ly representations of CT
2 compared to data presented in Kunkel et al., mal fami

(1981) where data are normalized to a value of 1 at the inversion base  ( izz = ) . 

Note that the Kunkel data represents an average formed from data taken during flights on eight 
 different days spaced over a year's timeframe (1977–8), all collected at around 1200 local time. 

Uncertainty in the mean was estimated to be a factor of ~1.5 (0.18 in a log-10 representation) 
based on )/exp( Nσ .  The standard deviations increase markedly (greater uncertainty) aroun
the inversion base height and above.  We may infer that this increase in variability is at least 
partially due to diurnal changes in entrainment to flux ratios as noted by Wyngaard and Moen
(1980).  This same variability would not influence the lower boundary layer.  As is evident from
the data, at these lower altitudes the deviations are markedly reduced.  If we then remove this 

d 

g 
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level of variation from the upper level standard deviations, we can estimate that perhaps half th
variance (or more) is caused by uncertainties due to the entrainment. 

Though the KT model does not appear to fit as well to the data as the 

e 

proposed function of 

e 
ng an es 

nt, a series of measurements conducted 

an for the 

el et 

 

dary Layer Development 

deling the structure of Cn
2 within the surface 

While 

equation 29, it still remains marginally within the error bounds of the data.  It has the same 
behavior as the KM model up to iz5.0 .  Its chief problem occurs following application of th
normalization due to the positioni d magnitude of its peak.  It is possible that the differenc
among the KT results, the KM model and the Kunkel data may relate directly to the environment 
in which the data were taken or the model developed.   

The KM model was based on the 1968 Kansas experime

3/4−z  

in essentially a grassland environment.  The Kunkel data were taken over a desert basin.  The 
Kukharets and Tsvang (1980) data were collected in the summers of 1976 and 1977 over the 
forested region surrounding Tomsk and the steppe region near Tsimlyansk.  Different 
characteristic entrainment effects may have been operating for the KT measurements th
Kansas experiment and Kunkel measurements.  As for the KM model, it appears to fit the 
Kunkel data very well below iz .  Its match is, in fact, even better than as reported by Kunk
al. (1981), since their normalization was to a CT

2 value near the top of the surface layer.  The 
normalization used in this report does lead to an improved fit.  Since the profile proposed here
extends beyond the inversion base height, however; it is believed to be more useful than the 
original KM model. 

5.1 Daytime Boun

With the KM model we have the capability of mo
layer, mixed layer, and through iz5.1~ .  However, a key unknown as yet undiscussed is the 
height of the mixed layer itself.  the HELHEM model encodes mixed layer heights (as 
plotted in figure 4), these results reflect varying meteorological conditions and hence are not 
uniformly varying (which is illustrated in the subsequent analysis).   
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Figure 4.  Norton and Hoidale (1975) data for second quartile (50% probability)  
height of mixed layer,  [m].   iz

Data for each line color group are organized as a solid line for the first listed month and a dashed 
line for the second listed month.  A cursory study of the daily peak heights shows that December 
is the lowest curve.  Curves for successive months show a steady increase in the maximum 
mixed layer depth through May/June.  Peak heights then decrease approximately uniformly, 
except that the July and August data appear out of order because of summer monsoon effects 
which impact WSMR in July.  These effects influence the positioning of the quartile data to 
higher average cloudcover conditions for July. 

These data are based on the sets of aggregated  data generated for the WSMR region by 
Norton and Hoidale (1975).  The statistics plotted are the second (2

iz
nd) quartile or 50% mark in 

the distribution of mixed layer heights.  Thus 50% of the available data have mixed layer heights 
less than the indicated value and 50% have layer heights which are greater.  In the Norton and 
Hoidale (1975) data 1st and 3rd quartile results were also illustrated.  From these plots, the 1st 
quartile appear to have layer heights approximately 80% the height of the 2nd  quartile while the 
3rd quartile represent heights approximately 125% of the height of the 2nd quartile. 

Based on these plots of  several features are apparent.  First, the height of the mixed layer 
appears to rise following sunrise and fall prior to the evening neutral event.  This behavior 
appears to contradict the behavior illustrated in figure 1 where the mixed layer abruptly develops 
into the residual layer around the time of the evening neutral event.  Apparently the true behavior 
is that the residual layer develops gradually, starting at the entrainment zone and building 
gradually downward toward the surface.  This is due to the surface heating gradually diminishing 
throughout the afternoon as the solar zenith angle increases.  The solar input therefore can only 
support a diminished mixed layer thickness as the zenith angle increases.  Second, we notice that 
the slope of the increase in the layer thickness is more gradual in the morning than the rate of 

iz
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height collapse in the afternoon.  A symmetric function of height with time thus does not seem 
appropriate.   

The goal of this analysis is to provide a numerical model for the mixed layer depth, , that 
smoothly varies from month to month, as well as according to the time of day.  Since the daily 
time dependence follows an approximately bell-shaped (Gaussian) curve, we start with this 
model.  We then note that the effect of the asymmetry is similar to a slightly cresting wave.  To 
simulate this effect, we can shift the curve over slightly, as a linear function of height, to express 
the asymmetric effects.  We simulate these two influences with the function  

iz

( ),exp b
i cyxAyAz −−==      (30) 

where x  is a normalized time of day which is zero sometime around the peak time of each curve.  
Normalized height  is used so that we can decouple the curve peak value (y A ) from the 
characteristic curve shape as a function of time of day.  Peak height is then modeled as a function 
of the time of the year: , where we introduce )(MAA = M  as a floating point month variable: 

, generated using , the current Julian date.  We ensure that 12365/)15( ×−= dJM dJ )( cyx −  is 
positive valued by imposing the absolute value symbol in order to ensure that the argument of 
the exponential is real valued.  This is necessary because in general 2≠b , as it would be if the 
diurnal curve exactly fit a Gaussian profile.  If 2≡b  then )( cyx −  always squares to a positive 
number. 

Because the curves are skewed, we need  (proportional to ) to produce a skewness tilt to the 
result.  But this results in  appearing on both sides of the equation.  The equation must 
therefore be solved iteratively.  Yet we anticipate that the skewness (tilt) parameter  will be 
small.  In this case, only a few iterations should be necessary for convergence. 

y iz
y

c

Having posited a form for our solution, we now need to analyze the available data to evaluate 
parameters , , and .  We begin with parameter .  Figure 5 plots the 
maximum daily heights associated with the 2

)(MA )(Mb )(Mc )(MA
nd quartile daily mixed layer depth data for each 

month.  We have developed three candidate fits to this data which are illustrated in figure 5.  
These curves are given by the equations, 
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The red curve (1st equation above) exhibits a simplified fit.  It ignores drops in layer heights in 
June and July which are likely related to monsoon activity.  The red curve thus best represents 
dry soil conditions, and characterizes scattered cloud cover conditions as further described 
below.  The blue curve (2nd of equation 32) is a two-term least squares fit to the actual data.  The 
green curve (3rd of equation 32) is a three-term least squares fit.  This latter fit better accounts for 
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average declines in mixed layer heights during monsoon periods, though, being an average, it 
does not reflect the actual condition on any particular day.   

 

Figure 5.  Three plotted fit models to the monthly 2nd quartile daytime maxima from Norton 
and Hoidale (1975) data of mixed layer height,  [m].  iz

For our purposes we chose the red curve.  A key reason for selecting this curve is related to the 
climatology of cloud cover for the site.  From the climatological cloud cover data collated by 
Hoidale and Newman (1974) for the WSMR, NM, site, based on the 1951–1973 period clear or 
scattered (up to 50%) cloud cover conditions were present over 60% of the time.  Hence, for 
most months the 2nd quartile daily maximum data would fall within the scattered cloud cover 
condition. 

We also considered the interaction of climatological averages of cloud cover with the statistics 
plotted in the 2nd quartile statistics modeled.  However, during the months July and August, the 
fractional cloud cover markedly increases, on average.  Thus, clear sky conditions, which 
average around 37% of each month, drop to an average of 22% for July and August.  When 
combined with the scattered percentages, the net cumulative probability of cloud cover less than 
50% for July and August falls to less than 50% meaning the 2nd quartile data are associated with 
broken cloud cover conditions rather than scattered conditions.  The red curve would then tend to 
better reflect the true height of the mixed layer for scattered cloud cover conditions throughout 
the year.  Norton and Hoidale (1975) further report that 3rd quartile mixed layer heights are 
approximately 25% higher, while 1st quartile results are 20% lower.  We can associate these 
differences in height with the effects of cloud cover conditions, permitting us to model both the 
height and effects of weather on the mixed layer height.  Third quartile results (125% of equation 
44) will thus be used for clear conditions (<10% cloud cover), while 1st quartile results (80% of 
equation 44) will be used for broken sky (60–90% cloud cover) conditions. 

 27



 

As the second phase in building the equation to predict the height of the mixed layer (equation 
31), we need to know how to set up the x  variable, which is a normalized time of day.  The best 
means of accomplishing this task is to note that regardless of the value of the exponent b , 
whenever the argument 1=− cyx , we have a mixed layer height equal to .  Therefore, our 

next analysis will be to determine at what times of the day these  of the 2

1−eA
1−e nd quartile diurnal 

peaks occur.  The data for these times, along with Fourier-fitted curves (using sinusoidal 
weighted fitting functions) of these data, are plotted in figure 6. 

 

Figure 6.  Interpolated times at which the Norton and Hoidale (1975) data for second quartile 
mixed layer heights equaled  of the maximum monthly heights.   1−e

Morning curve is given by equation 33.  Afternoon curve is given by equation 34. 

As expected, in summer the  points occur earlier in the day and later in the afternoon than 
during the winter based on the increased daylight time.  Fourier analysis was again used to 
produce least squares fit equations: For the morning crossing times, 

1−e

]12/)2.2(2sin[4.05.10 ++= Mtm π ,    (33) 

was found, where M  is the same month variable described previously.  For the afternoon 
crossing time the equation, 

]6/)5.2(2sin[1.0]12/)6.2(2sin[6.03.17 −+−+= MMta ππ , (34) 

was obtained.  For the afternoon event the second Fourier sine term is needed primarily to 
account for effects of July and August monsoon clouds.  However, in this case, the means of 
removing the cloud cover effects are less obvious, and thus the equation containing the effects 
was retained. 
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We thus now have two parts of formula for predicting the mixed layer height, but we still need to 
know the degree of the skewness of the curves in order to decouple the cy  term from the x  term 
so we can know how to normalize the time.  This step equates to evaluating the constant .   c

To do this, we analyze the derivatives of equation 31 at the points .  But before 
we can look at the derivatives, we need to consider another problem first: We have written 
equation 31 in terms of a normalized time, 

1−== eAAyzi

x .  But, we do not yet know how to normalize x .  To 
first perform this normalization, we consider the argument values of the exponential when the 
mixed layer equals : When this condition occurs, the argument value must equal 1−eA

1=− cyx .  But for this case, we know .  We thus haveeey /11 == − 1/ =− ecx .  Now, we 

expect that the normalized time x  is centered around the noon timeframe.  Thus at the morning 
 time, , while in the afternoon, .  We call the morning time , so that 1−e 0<x 0>x mx 0<mx , 

and the afternoon time , so that .  Hence, we can write, ax 0>ax 1−=− cyxm  and 1+=− cyxa .  
The difference  must then be 2.  We can then produce a linear model for the normalized 
time so that .  This model is given by, 

ma xx −
2=− ma xx ]2/)/[()( 0 ma ttttx −−= , where t  is the 

actual local time in hours past midnight,  is the morning  crossover time,  is the 
afternoon  crossover time, and  is an offset time close to noon that is yet to be determined.  
Even though we do not know , we can show directly that inserting times  and  into the 
above definition results in . 

mt
1−e at

1−e 0t

0t mt at
2=− ma xx

From our newly defined x  variable in terms of time t  in hours, we can compare the derivative of 
equation 31 with the time rate of increase in height of the mixed layer at time  and, likewise, 
the time rate of decrease in  at time  taken directly from the Norton and Hoidale data.  From 
the equation we have  

mt

iz at

ma

ii

tt
A

dx
dy

dt
dx

dx
dz

dt
dz

−
==

2 .      

From the data sets we obtain sample results for each month for both the morning and afternoon 
crossover times.  We call these samples  and  data, respectively, which compare directly to 
the  values.  We then normalize these statistics by multiplying by the quantities 

.  This produces results comparable with .  These normalized data are plotted 
in figure 7. 

md ad
dtdzi /

Att ma 2/)( − dxdy /
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Figure 7.  Normalized rates of rise (fall) in mixed layer height as a function of  
month from Norton and Hoidale (1975) reported mixed layer 2nd  
quartile depth data.   

The curves plotted are given by equation 35.  The curves used to model the crossover normalized 
gradients are,  

]12/)4.4(2sin[16.012.1;60.0 ++−== Mgg am π , (35) 

for the morning and afternoon crossover point, respectively.  Considering the amount of spread 
in the afternoon crossover data, it is perhaps better to use the constant 1.12, but there does appear 
to be a trend in the behavior at the crossover that is more than merely a constant effect.  The 
consistency of the morning transition gradient appears indicative of the characteristic way 
surface heating burns off the morning inversion layer.  By comparison, afternoon variability is 
likely due to the overall depth of the boundary layer, and the availability of late afternoon solar 
energy. 

To use these results, we rewrite equation 31 as, 

)()ln( /1 cyxy b −±=− ,     (36) 

where we use the positive branch when cyx >  and the negative branch when cyx < .  Taking 
the derivative of both sides with respect to x  we find, 

⎟
⎠
⎞

⎜
⎝
⎛ −±=−− −

dx
dyc

dx
dy

y
y

b
b 11)ln(1 1/1 .    (37) 
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Evaluating this result at  (1−= ey 1ln −=y ) we obtain, 

⎟
⎠
⎞

⎜
⎝
⎛ −±=−

dx
dyc

dx
dye

b
11 1 .     (38) 

Now at the morning crossover we have mgdxdy =/  and we use the negative branch.  We thus 
have, 

mmm g
b
eccgg

b
e

⎟
⎠
⎞

⎜
⎝
⎛ +=→+−=− 11 .   (39) 

At the afternoon crossover we have, 

aaa g
b
eccgg

b
e

⎟
⎠
⎞

⎜
⎝
⎛ −=→−−=− 11 .   (40) 

We now have two equations in two unknowns.  Solving, we find, 
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=

amam gg
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eb 11

2
1;

/1/1
2 .   (41) 

At  the argument to the exponential must equal -1.  Similarly, at  the argument must equal 
+1.  This leads to the transformation equation linking dimensionless time, 

mt at
x , to t . 

e
c
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tt

x
ma
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−

=
)

0

(
)(

2 ,      (42) 

where .  Altogether, then, we have equation 31 for the overall prediction 
equation for .  This equation uses equation 32 (first line) for 

2/)(0 am ttt +=

iz A , equation 41 for parameters b  
and c , equation 35 for  and , and equation 42 for mg ag x , based on  from equation 41 and 
equations 33 and 34 for times  and , respectively.  These various relations are combined to 
illustrate the estimates of daytime variations of  as a function of month in figure 8. 

0t

mt at

iz

We thus now have a viable model for daytime mixed layer depth, , which provides the missing 
parameter needed for the boundary layer model given in equation 29.  The next step is to link the 
equation 29 boundary layer model to an upper troposphere model based on the CLEAR I study.  
This step is performed in the next section.   

iz
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Figure 8.  Combined predictions of mixed layer depth as a function of  
month of the year based on Norton and Hoidale (1975) data. 

6. The Upper Troposphere Profile  

In section 1 we discussed the H-V model for vertical Cn
2 structure.  Our chief interest was its 

behavior in the boundary layer.  However, while H-V may be the most widely cited model, other 
profile models provide superior alternatives for modeling upper atmospheric Cn

2 structure.  For 
example, in the Submarine Laser Communication (SLC) studies model, Miller and Zieske (1979) 
provide a complete piecewise continuous profile of Cn

2 starting from approximately 3 km ASL 
up to 20 km ASL.  SLC provides model profiles of Cn

2 for both day and night mean cases, 
starting at 3 km ASL because the astronomical observatory for which the model was designed is 
situated at the summit of a volcano 3 km ASL in Hawaii.  This observatory is the Air Force's 
Maui Optical Station (AMOS).  Of critical interest, the SLC day and night models are identical, 
starting at 1500 m AGL; that is, 4500 m ASL.  This starting point is important because the 
atmosphere 1500 m above a geographically isolated, 3 km-elevated island surface will be nearly 
representative of an atmosphere 4500 m above the ocean.  The fact that the SLC day and night 
profiles are independent of time above a certain altitude provides justification for applying the 
CLEAR I model results, obtained at night, to the daytime upper troposphere as well. 
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Beland (1993) discusses both the Air Force Geophysics Laboratory's (AFGL's) AMOS and the 
CLEAR I models.  The AMOS model, taking its name from the observatory for which its profile 
was tailored, was an attempt to model characteristic Cn

2 vertical profiles for characterizing 
propagation effects for that particular site.  The model results show similarities to the SLC 
model, but feature fewer gradient discontinuities in the vertical profile.  Beland's (1993) 
discussion of these models is highly recommended reading, since it provides details of methods 
of data collection and limitations of the models.  Subsequent to developing the AMOS profile, 
AFGL and the Army Atmospheric Sciences Laboratory studied vertical profiles of Cn

2 over the 
New Mexico desert for similar characterization purposes.  The results of these studies were 
codified in the CLEAR I model.  However, while both daytime and nighttime profiles were 
sought, the stellar scintillometers used to measure the profile shapes were inaccurate during 
daylight hours.  Thus, only a CLEAR I night model was developed.  This model is given by, 

log ( ) , . .10
2 2 123 213C Z A BZ CZ Zn = + + < ≤ ,  (43.A) 

where , A = −10 7025. B = −4 3507. , C = +08141. ;  

log ( ) , . .10
2 2 213 10 34C Z A BZ CZ Zn = + + < ≤ ,  (43.B) 

where , A = −16 2897. B = +0 0335. , C = −0 0134. ;  

log ( ) exp
( )

, .10
2 2

2

22
10 34 30C Z A BZ CZ D

Z E
F

Zn = + + + −
−⎧

⎨
⎩

⎫
⎬
⎭

< ≤ , (43.C) 

where , A = −17 0577. B = −0 0449. , C = −0 0005. , D = −0 6181. , E = 155617. , F = 34666. .   
Z  denotes height ASL in kilometers.  The CLEAR I model starts at 1.23 km ASL because this is 
the surface elevation of the New Mexico desert basin.   

The AMOS model was designed to treat a purely oceanic environment and the CLEAR I model 
was designed for largely continental conditions.  Hawaii is in the tropics while New Mexico is a 
midlatitude continental location.  Yet the two Cn

2 profiles for AMOS and CLEAR I are almost 
identical at altitudes above 10 km ASL (essentially the tropopause).  The question therefore is 
whether we are comparing disparate conditions or whether the similarities in the two profiles at 
upper altitudes are characteristic of more underlying similarities in physics of the tropopause 
between the two sites.    

Contrary to the similarities between these two profiles above 11 km ASL, major differences 
occur between the AMOS and CLEAR I profiles below 11 km.  Briefly, these consist of steeply 
increasing turbulence in CLEAR I below 11 km as opposed to relatively constant turbulence in 
AMOS extending down to 5 km. Since we are interested primarily in desert/land scenarios we 
will henceforth focus on the CLEAR I model and linking this model into the boundary layer 
turbulence model of equation 29. 
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First, as discussed previously, CLEAR I is only available for nighttime conditions.  Nevertheless, 
the SLC profiles show that the vertical Cn

2 behavior is insensitive to time of day at altitudes 
above 5 km ASL.  Also, we have just indicated that the AMOS and CLEAR I profiles are 
virtually identical above 11 km ASL.  These observations, combined with a personal 
communication with R. Beland indicate the following: Midlatitude Cn

2 profiles appear relatively 
time and location independent above 11 km ASL.  Second, since diurnal forcing at the surface 
takes considerable time to transport vertically in the atmosphere, the CLEAR I night results 
should be applicable to daytime conditions above 5 km ASL as well.  There may be seasonal 
variations in these statistics.  Further research will be necessary to translate available data from 
additional sources into the context of the CLEAR I profile shape.  The remaining step in this 
process is thus to connect our boundary layer profile model (equation 29) to the CLEAR I profile 
(primarily equation 43.C) starting at the top of the boundary layer (about 3 km AGL) and 
approximating the CLEAR I model starting in the mid troposphere (5 km ASL).  We expect 
diurnal variations in Cn

2 will be largely confined to the boundary layer, since heating/cooling 
processes above the surface will not be strongly localized and hence sharp temperature/density 
gradients will not be driven by diurnal forcing effects.   

The key feature of the CLEAR I night profile is its Gaussian peak placed at approximately 15 km 
(see equation 43.C).  This peak marks the transition to the stratospheric inversion.  To couple the 
boundary layer equation to the CLEAR I profile we choose to build a new profile equation which 
smoothly transitions to equation 43.C at high altitude.  We then approximate equations 43.A and 
43.B using our existing boundary layer equation plus new transition terms.  However, we must 
first convert equation 43.C from its original form, where height appears in ASL form to an AGL 
form more suitable to wargaming applications.  To do so, notice that to shift the height of the 15 
km Gaussian peak all that is necessary is to adjust the constant E .  The new value is set to 
E = 14 3317. .  Coefficients  and D F  need not be modified.  The correction to E , a 1.23 km 
decrease, adjusts this height to reflect the surface height of southern New Mexico.  Similarly, we 
correct coefficients  and A B  such that the intercept and slope of the Cn

2 profile evaluated using 
the old profile at a height of Z = 123.  km generates the same results for the new profile when 
using ′ =Z 0  km.  The modified values are A = −171137. , and B = −0 0461. .   does not need 
to be modified since the curvature of the profile is unmodified.  The form of the new equation is 
identical to equation 43.C.  The only differences are in the coefficients and the height parameter 
(renamed 

C

′Z ) which measures altitude above the surface.  Henceforth we designate this 
modified version of equation 43.C) as the function N Zu ( )′ .  We shall, however, simply write 
height as Z , dropping the primed convention, since the height will be assumed to be height 
AGL, not height ASL. 
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It also seems more realistic to seek a smooth function of altitude which approximates the 
CLEAR I profile but avoids the profile kink which occurred at 10.23 km ASL in the original 
model.  We therefore propose the following equation to model the combined mid-level and 
upper-level CLEAR I function: 

N Z N
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N Z
Z Z
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, (44) 

where we introduce the fitting constant Nm = −16 23. .  This functional form replaces both 
equation 43.B and 43.C, and is based on height AGL.  Figure 9 compares the new equivalent 
form of the CLEAR I model with results of the original CLEAR I profile's equations 43.B and 
43.C offset in height by 1.23 km. 

 

Figure 9.  Plot of the upper two sections of the original CLEAR I profile 
model and a revised/smoothed vertical profile approximation of  
the same curve region. 

We then simply need a set of profile equations that smoothly transition with the boundary layer.  
It is not necessary that we have a daytime upper troposphere model since, as previously shown, 
the nighttime model approximates the daytime case.  However, we do need an appropriate 
transition model to connect the two model domains.  We can perform this connection using a 
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pair of sigmoidal functions to splice the two together starting at approximately  and ending 
around 10 km ASL. 

2 zi

We therefore will use the function  (emulating the CLEAR I model's mid (m) and upper 
(u) portions) for heights above 10 km, and introduce the function 

N Zmu ( )

N Z X Z A P TK K( ) ( ) log [ / ]= +1000 10
2 2 4 ,   (45) 

based on the Kaimal CBL model for heights below 3 km ASL.  Here,  is a log-base-10 
representation of C

N K

n
2 generated based on equation 20.  The CT

2 input to equation 20 is provided 
by  from equation 29.  Pressure and temperature inputs can be approximated by adiabatic 
atmospheric profiles where  

X K

T Z T Z P Z P Z( ) ( ) . ; ( ) ( ) exp( / )≈ − ≈ −0 6 455 0 8 .   

Finally, the boundary layer and CLEAR I profiles terms can be combined using sigmoidal 
functions: 

N Z Z N Z Z N Zmu K( ) ( ) ( ) ( ) (= )− + −σ σ7 7 ,  (46) 

where N Z( )  now represents the log-base-10 mean Cn
2.   

We compare the resulting vertical profiles created using this model for two examples.  The 
reference level for both is  m AGL.  The dashed (green) curve begins at a value of -12.2.  
The second solid (red) curve begins at a value of -12.7.  The two curves are illustrated in figure 
10.  Due to the sigmoidal functions used, changes in the C

zr = 2

n
2 at low level only influence the 

boundary layer region. 
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Figure 10.  Comparison of daytime vertical profiles for cases with different 
reference level turbulence values, log10 [Cn

2] = -12.2 (green dashed)  
and -12.7 (red solid). 

Once the log-mean Cn
2 profile is known, we may evaluate the mean Cn

2 at any level via the 
formula (see equation 10),  

C zn
N z z2 10

2

( ) ( ) ( )/= +σ 2 .     (47) 

Based on communications with R. Beland, the σ  log-standard deviation appears to be a roughly 
constant factor of 2–3; that is, about 0.4 in its log representation, or an offset of .  In 
other words, the variations do not appear, upon averaging, to be too significant. 

σ 2 2 01/ ≈ .

7. The Stable Boundary Layer  

We now briefly discuss modeling optical turbulence at night within and above the nocturnal 
boundary layer (NBL).  The lowest portion of this layer is termed the SBL.  This layer extends 
from the surface to the top of the surface based inversion, .  Above this layer, as illustrated in 
figure 1, are the residual layer and the capping inversion.  Our goal is to link a model of the 
turbulence within the stable surface layer to a model of the overall boundary layer, and thereafter 
to the CLEAR I night model.  Nominally, we already know the results for the surface and upper 

zs
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troposphere regions at night.  The only missing structure is the intermediate residual layer.  This 
layer begins somewhere between 30 and 400 m AGL. This initial height depends on the 
thickness of the surface inversion which is an increasing function of height throughout the 
evening. The layer extends up to the capping inversion height that demarcates the top of the 
residual layer, 1–3 km above the surface.   

Complicating this analysis are two issues.  The first is a data gap. Since most applications 
looking to answer questions of layer structure have been associated with high energy laser (HEL) 
ground and airborne systems, the regions of the atmosphere studied, and the questions addressed, 
have been largely tailored to either very high altitude (30,000+ ft) long range horizontal 
propagation (airborne laser) or earth to space (free-electron or other ground based lasers).  As 
such, the structure of the intermediate atmosphere has been handled mainly as a bulk quantity for 
only specific laser wavelengths.  Second, for the information that does exist, only the integrated 
results were studied; that is, ground-based measurements of coherence diameter ( r ) and 
isoplanatic patch size (

0

θ0 ).  From sporadic, largely anecdotal evidence (personal communication 
with R. Beland) we know the general standard deviation of the various layers outside the 
boundary layer are again log-normally distributed with standard deviation in the 2–3 range (log-
based σ  between 0.3 and 0.5).  We also know that Cn

2 is a generally decreasing function of 
height, whose main driving dependence may be simply the overall rate of decline of pressure and 
temperature with altitude. 

In section 5 we developed a CT
2 model which coupled the predicted surface layer CT

2 
functionality to a known model of CT

2 variation throughout the CBL, up to the base of the 
daytime entrainment zone.  At night, the behavior of the vertical structure of CT

2 is based more 
on smaller energy sources (wind driven mixing, gravity wave energy, etc.).  These sources, while 
much less predictable, being also less energetic, may in some sense be viewed as perturbation 
mechanisms that exist at all times, but which only emerge as significant factors at night.  While it 
is true that the variability of the Cn

2 increases at night, we postulate that a workable model for 
use in wargaming applications is possible. 

Kaimal and Finnegan (1994) provided a survey of the NBL structure.  According to their survey, 
the vertical structure of CT

2 is described as “ z -less” beginning at approximately .  This 
term “

z LOb=

z -less” implies that the functionality does not depend on height z  at all.  According to 
Nieuwstadt (1984), z -less structure means CT

2 depends on only local wind and temperature 
gradients at each level.  These levels become decoupled from each other and from the ground 
due to the stable stratification in the ground-based inversion so that each level becomes 
independent of height z .  On the one hand this makes a systematic model of the vertical 
dependence a problematic proposition.  On the other hand, since the layers become decoupled, 
they are also cut off from sources of energy.  We may thus look at the statistical distribution of 
energy in the different layers as a stochastic process.  Equation 19 encodes this z -less 
relationship as best as possible using a  limiting dependence for heights , .  z 0 z LOb> LOb > 0
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However, detailed studies of the stochastic nature of the intervening layers are largely lacking.  
Studies of these issues have devolved to studies of large eddy simulations (LES) of the boundary 
layer atmosphere.  Due to the complexities of the LES modeling process much intense effort has 
been expended addressing these models in and of themselves and answering questions regarding 
the turbulence structure have been sidelined by other issues due to funding priorities, as must be 
expected.  Yet the need remains for some proposed vertical profile model.   

To provide such a model we begin with equation 19, which provides a vertical form for CT
2 at 

night:  

C z C z
z z L
z z LTS T r

Ob

r Ob

2 2
2 3 2 3
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1 7
1 7
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− −

− /−

enote 

t 

.   (48) 

C zT r
2 ( )  is evaluated using the iterative technique described in section 4.2.  Here, we again d

CT
2 in the surface layer using CTS

2.  Knowing CTS
2, equation 20 is used to evaluate Cn

2 for the 
surface layer.  However, since a useful boundary layer equivalent of equation 29 does not exis
due to the z -less stratification, we must postulate that CTS

2 simply continues to the top of the 
layer: 

X z CX ( ) log ( )= 10
2
TS ,      (49) 

where we use the quantity  to both distinguish from , the daytime Kaimal vertical 
structure model in the boundary layer, and to establish that we are on largely unestablished 
ground.  We know that the general behavior is diminishing C

X zX ( ) X K

n
2 with height.  This will be 

accomplished with this functional form, primarily due to pressure and temperature decreases 
with height. 

Combining this vertical form for CT
2 with pressure and temperature vertical models, we produce 

an analog of equation 45:  

N z X Z A P TX X( ) ( ) log [ / ]= +1000 10
2 2 4 .   (50) 

In a similar fashion to equation 46, we thus produce a nighttime transition model to pass from the 
boundary layer constant CT

2 assumption to the upper air CLEAR I night model.  Since we have 
some confidence in this model, being based on measurements, we quickly transition to this 
model once out of the boundary layer.  This accounts for the rather short transition distance 
parameter of .  Here,  is the depth [km] of the total boundary layer from the surface to 
the base of the capping inversion. 
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where  is the total nocturnal log-base-10 CN N n
2 model appropriate for ground level to 30 km.  

Based on variations that occur in Cn
2 levels in the surface layer coupled with comments from 

Beland, it is believed that this mean can be coupled with a log-standard deviation of 
approximately σ = 05.  throughout the atmosphere under stable conditions. 

8. Ground Level Point-to-Point Calculations 

For ground level calculations we have the data as presented in figure 2 to guide us in determining 
how Cn

2 varies statistically along a single LOS.  We also considered parameters ρ0  and θ0 .  The 
former, ρ0  (equation 1), is directly proportional to r , the coherence diameter (Tofsted and 
Auvermann, 1991) which appears in both the long and short exposure optical transfer functions 
governing blur effects on passive optical systems (Goodman, 1985, section 8.7).  However, in 
effects predictions models (including the Army's NVTherm) C

0

n
2 is currently treated as a constant 

of the propagation path.  While this is seldom the case, our goal in this section is to express an 
effective Cn

2 value applicable for a specific path geometry.  The influence of geometry is 
primarily in terms of the height of the LOS above the terrain, but also depends on the path 
weighting function associated with ρ0 .  We further vary Cn

2 according to its temporal 
fluctuations.   

The dependence on geometry may either be because target and observer are at different heights 
above the terrain (a slant path) or because the terrain is non-flat and therefore the ground falls 
away beneath the LOS.  To simulate these changes we need a different form for ρ0  than as 
expressed in equation 1.  Rather than a slant path where  is a vertical parameter and s ϕ  
represents the zenith angle, ground-to-ground paths require we invoke the equation (e.g., Beland, 
1993; Tofsted and Auvermann, 1991), 

[ ]ρ0
2 2 5 3

0

3 5

146 1= −∫
−

. ( ( )) ( / ) /
/

k C z s s L dsn

L
,   (52) 

where  is now the distance along the path starting from the observer (s s = 0) to the target 
( ), whereas previously  was a vertical distance.  Further, Cs L= s n

2 is now a function of height 
above the surface ( z ) at each point along the path.  We compare this calculation to a similar 
calculation where ρ0  is computed using constant Cn

2.  In this latter case Cn
2 can be passed 

through the integral sign and we obtain: 
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k L C u du k L Cn n . (53) 

Our interest is in comparing the Cn
2 we should use to represent the path varying Cn

2 actually 
encountered.  To do so, we will label the effective Cn

2 as Cn
2 .  Associated with this turbulence 
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strength we have ρ0 .  For the effective C Cn n
2 2( )  to yield the same effect we simply 

equateρ ρ0 = 0 .  Then, based on equations 47 and 48, upon canceling terms, we find, 

C C z uL un nρ0

2 2

0

11
3 8

1= ∫/
[ ( )]( ) / du5 3− ,    (54) 

where  permits us to non-dimensionalize the path integral. s uL=

As an example, we consider an LOS in which the terrain falls away beneath the optical path 
between an observer and target (effectively an overwatch situation).  Let the observer's and 
target's initial heights be 2 m AGL.  Assume the terrain drops away under the path as a quadratic 
function such that the center of the path is at 4.0 m AGL.  From equation 13 we see that for even 
moderate height z  the Cn

2 will behave almost with a height dependence of z −4 3/ .  We thus 
postulate this as a simple rule for this illustration:  Let C C .  Then, assuming 

 at 2 m height, upon integration we obtain an effective C
zn n

2 2 42 2= −( ) ( / ) /3

m 2 3Cn
2 135 10= × − − /

n
2 of 

~ . /11 10 13 2 3× − −m , a reduction almost a factor of 5, or by ⅔rds of an order of magnitude.  A 
reduction of this magnitude could significantly modify the computed effects of turbulence since 
a reduction of this order causes theρ0  parameter to increase by a factor of 2.5, which could be 
the difference between seeing and not seeing an object.  Hence, somewhat trivial changes in 
terrain can have significant influences on the effective turbulence impacting a given LOS. 

8.1 Numerical Evaluation 

One significant question, however, is how to implement an LOS calculation such as equation 49.  
Obviously wargames pay a premium on LOS calculations and evaluating equation 49 for each 
intervisibility in the scenario comes at a significant cost.   

To somewhat defray these costs, some shortcuts are possible.  First, only those lines for which 
intervisibility occurs need be evaluated using equation 49.  Second, the effects of equation 49 
depend on the integrated Cn

2 over the entire path.  Some coarseness in the evaluation is therefore 
acceptable.  For example, the grain of the path integral need be no better than 100 m.  Third, we 
can simplify the integral significantly if we store the Cn

2 height profile as an array of evenly 
spaced data points.  Let zδ  be the interval between samples.  Then, the index of the Cn

2 to use 
for each path segment is zzi δ/= .  Assuming constant Cn

2 within each path segment does not 
do great harm to the integration.   

A further simplification involves discretizing the integral itself.  Since the path will be 
determined from the intervisibility calculation, we could simply reuse the results of that 
calculation which should include range and height information.  We first produce a table of 
results of the form  
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1
,     (55) 

where , and .  These results represent the integrated weighting value of 
the integrand in equation 49.   

x ii = / 1000 i = 0 1000...

To use this W  array, we need the total range from observer to target (L), a set of distances along 
this total path (s

i

k), and associated heights AGL (zk).  For each segment of the total path, we first 
compute the Cn

2 using the height zk and the tabulated Cn
2 data (call this result K ).  We assume 

Cn
2 is constant over each path segment.  Then, we compute the path position of the end of this 

segment, .  The appropriate index position in the W  array is thus .  

We then update a running sum which approximates the integral: 

z u z s Lk k k k= / i kk ui 1000=

K W Wi ik k
= −

−
∑ (

1
Kk) .     (56) 

8.2 Temporal Fluctuations 

In addition to the mean effects of LOS height above the surface, for near-surface LOSs we need 
to consider temporal fluctuations.  From figure 2, Cn

2 shows an approximately log-normal 
distribution.  This data was obtained via a Lockheed scintillometer measuring integrated 
turbulence over a 950 m path, at 4 m AGL over roughly flat terrain.  The data were collected 
over a 2-hour period around noon on a clear day (September 21, 2001) near the Tank Tower, an 
area of near-uniform desert creosote bush vegetation close to the southern border of WSMR, 
NM.  Conditions were cloudless, and a review of temporal plots of wind and temperature 
indicated a statistically wide-sense stationary (e.g., Goodman, 1985) pattern of fluctuations.  The 
Cn

2 appeared to only slightly increase in strength during the collection period.  Recapping our 
description of the figure 2 data, the distribution was approximately log-normally distributed, with 
log-10-mean of -13.319 and log-10-standard deviation of 0.215.  The turbulence outer scale for 
this path should be considerably shorter than 950 m such that paths of length greater than 950 m 
may be simulated assuming the path consists of N L= / 950 independent identically-distributed 
segments of length 950 m each.  The log-standard deviation of a path longer than 950 m should 
have a log-standard deviation reduced from its value over the 950 m path, such that 

NL /215.0=σ .  We can then generate a fluctuation of Cn
2 in log-10 space based on a 

weighted mean Cn
2 and a perturbation generated randomly based on Lσ .  In this way we produce 

time varying path effects. 

Again, however, we emphasize that this model applies to daytime atmospheric effects only.  In 
the daytime surface layer the key conveyors of turbulent energy are vertically oriented 
convective plumes.  The turbulence within such plumes is perhaps an order of magnitude 
stronger than the turbulence outside.  For most paths we expect several such plumes of different 
turbulence strength to lie along a given path.  As these plumes pass in and out of a given LOS 
they create fluctuations in the detected turbulence and result in characteristic autocorrelation 
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times of the turbulence.  For the data presented in figure 2 this time constant is about 20 seconds, 
considerably shorter than the frame rate of any Army sensor.  For a given glimpse along a given 
LOS, turbulence effects may thus be momentarily severe, but intervisibility conditions may be 
reestablished within a matter of seconds.  If such effects are to be modeled in a wargame special 
attention should be given to ensure that the same perturbation statistic is used along a given LOS 
for both observer and target, even though the mean Cn

2 ( Cn
2 ) may be different.  Also, the 

existence of a defeating level of turbulence along a given line may be only temporary and so 
should be updated approximately every 20 seconds with a new instantiation of the turbulent 
fluctuation. 

For vertically oriented LOS's and slant paths the significant fluctuations in turbulence intensity 
appear to be concentrated in shear layers instead of vertically oriented plumes.  To model such 
layers we will make a fluctuating vertical profile whose mean is determined by the combined 
upper layer associated with the CLEAR I night model and the KT profile.  Between the top of 
boundary layer and the 10 km level associated with the start of the upper troposphere CLEAR I 
equation we will use a sigmoidal transitional function centered at 8 km with a width parameter of 
2 km.  We thus transition smoothly between the KT model and the CLEAR I model over roughly 
a 4 km interval.   

9. Discussion 

The structure of the nocturnal boundary layer environment has eluded researchers for perhaps the 
past 30 years.  It is unlikely that we should do better than several more well funded efforts within 
a much shorter timeframe.  This is not to say that we do not directly benefit from these prior 
developments.  Indeed, significant work is available and has been used to gain a much more 
thorough understanding of this area than was available heretofore.  However, much of it is 
conflicting and further time is necessary to sift the information into useful and redundant 
categories. 

Significant information is available on nocturnal atmospheric processes of wind, temperature, 
and wave evolution as well as primarily empirical measured data.  To integrate all this 
information has been difficult.  In addition, we should point out that the daytime model proposed 
is useful for a noon timeframe only.  Early morning and late afternoon conditions will tend to 
either evolve away from or reduce toward neutral condition profiles.  Such profiles are not 
considered in the current effort.  We expect to address these gaps in a future effort as well.
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10. Conclusions 

We have developed an initial picture of a vertical structure model of Cn
2 valid for a profile of 

atmospheric turbulence beginning at the surface and continuing through the upper troposphere.  
While not yet directly linked to meteorological conditions, it provides a characteristic sense of 
the strength of turbulence throughout an entire vertical column.  Unlike previous models, it is 
integrated from the surface smoothly through each level, handling surface layer, mixed layer, and 
entrainment zone, and the troposphere to the tropopause for the daytime atmosphere.  The time 
of applicability of the profile is nominally 12 noon currently, but is useful for calculations 
starting midmorning through midafternoon.  Additional functionality will be considered in 
following developments.  Currently, the user can select a value of Cn

2 at a specified reference 
altitude within the surface layer.  A method is then specified for evaluating the Monin-Obukhov 
length to facilitate vertical scaling in the surface layer and its extension into the free convective 
layer.  In the Executive Summary we have provided a concise recommendation regarding the 
specific equations to use to implement the technique discussed in this report.
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Abbreviations and Acronyms 

AFG   Air Force Geophysics Laboratory 

AGL   above ground level 

AMOS   Air Force’s Maui Optical Station 

ASL    above sea level 

CBL   convection boundary layer 

CLEAR I  Critical Laser Enhancing Atmospheric Research I 

HEL   high energy laser 

HELHEM  High Engery Laser Handbook Empirical Model 

H-V   Hufnagel-Valley 

IR   infrared  

LES   large eddy simulations 

LOS   line-of-sight 

MTF   modulation transfer function 

NBL   nocturnal boundary layer 

RHS   right hand side 

rms   Root Mean Square 

SBL   stable boundary layer 

SLC   Submarine Laser Communication 

UAV   Unmanned Aerial Vehicle 

WSMR  White Sands Missile Range 
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